Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36079598

RESUMO

Phosphorus is a non-renewable natural resource that will run out of reserves in the upcoming decades, making it essential to understanding the inheritance of nutrient use efficiency for selecting superior genotypes. This study investigated the additive and non-additive effects of commercially relevant traits for the popcorn crop (grain yield-GY, popping expansion-PE, and expanded popcorn volume per hectare-PV) in different conditions of phosphorus (P) availability in two locations in Rio de Janeiro State, Brazil. Six S7 lines previously selected for P use-L59, L70, and P7, efficient and responsive; and L54, L75, and L80, inefficient and non-responsive-were used as testers in crosses with 15 progenies from the fifth cycle of intrapopulation recurrent selection of UENF-14, with adaptation to the North and Northwest regions of Rio de Janeiro State. Using the Griffing diallel analysis, P use efficiency was predominantly additive in the expression of PE, and non-additive effects were prominent for GY and PV. For obtaining genotypes that are efficient for phosphorus use, it is recommended that heterosis with parents that provide additive gene accumulation for PE be explored.

2.
Plants (Basel) ; 10(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34579378

RESUMO

The method of regional heritability mapping (RHM) has become an important tool in the identification of quantitative trait loci (QTLs) controlling traits of interest in plants. Here, RHM was first applied in a breeding population of popcorn, to identify the QTLs and candidate genes involved in grain yield, plant height, kernel popping expansion, and first ear height, as well as determining the heritability of each significant genomic region. The study population consisted of 98 S1 families derived from the 9th recurrent selection cycle (C-9) of the open-pollinated variety UENF-14, which were genetically evaluated in two environments (ENV1 and ENV2). Seventeen and five genomic regions were mapped by the RHM method in ENV1 and ENV2, respectively. Subsequent genome-wide analysis based on the reference genome B73 revealed associations with forty-six candidate genes within these genomic regions, some of them are considered to be biologically important due to the proteins that they encode. The results obtained by the RHM method have the potential to contribute to knowledge on the genetic architecture of the growth and yield traits of popcorn, which might be used for marker-assisted selection in breeding programs.

3.
Front Plant Sci ; 11: 574674, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343591

RESUMO

Drought stress is an important abiotic factor limiting common bean yield, with great impact on the production worldwide. Understanding the genetic basis regulating beans' yield and seed weight (SW) is a fundamental prerequisite for the development of superior cultivars. The main objectives of this work were to conduct genome-wide marker discovery by genotyping a Mesoamerican panel of common bean germplasm, containing cultivated and landrace accessions of broad origin, followed by the identification of genomic regions associated with productivity under two water regimes using different genome-wide association study (GWAS) approaches. A total of 11,870 markers were genotyped for the 339 genotypes, of which 3,213 were SilicoDArT and 8,657 SNPs derived from DArT and CaptureSeq. The estimated linkage disequilibrium extension, corrected for structure and relatedness (r 2 sv ), was 98.63 and 124.18 kb for landraces and breeding lines, respectively. Germplasm was structured into landraces and lines/cultivars. We carried out GWASs for 100-SW and yield in field environments with and without water stress for 3 consecutive years, using single-, segment-, and gene-based models. Higher number of associations at high stringency was identified for the SW trait under irrigation, totaling ∼185 QTLs for both single- and segment-based, whereas gene-based GWASs showed ∼220 genomic regions containing ∼650 genes. For SW under drought, 18 QTLs were identified for single- and segment-based and 35 genes by gene-based GWASs. For yield, under irrigation, 25 associations were identified, whereas under drought the total was 10 using both approaches. In addition to the consistent associations detected across experiments, these GWAS approaches provided important complementary QTL information (∼221 QTLs; 650 genes; r 2 from 0.01% to 32%). Several QTLs were mined within or near candidate genes playing significant role in productivity, providing better understanding of the genetic mechanisms underlying these traits and making available molecular tools to be used in marker-assisted breeding. The findings also allowed the identification of genetic material (germplasm) with better yield performance under drought, promising to a common bean breeding program. Finally, the availability of this highly diverse Mesoamerican panel is of great scientific value for the analysis of any relevant traits in common bean.

4.
G3 (Bethesda) ; 9(8): 2739-2748, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31263059

RESUMO

The genetic merit of individuals can be estimated using models with dense markers and pedigree information. Early genomic models accounted only for additive effects. However, the prediction of non-additive effects is important for different forest breeding systems where the whole genotypic value can be captured through clonal propagation. In this study, we evaluated the integration of marker data with pedigree information, in models that included or ignored non-additive effects. We tested the models Reproducing Kernel Hilbert Spaces (RKHS) and BayesA, with additive and additive-dominance frameworks. Model performance was assessed for the traits tree height, diameter at breast height and rust resistance, measured in 923 pine individuals from a structured population of 71 full-sib families. We have also simulated a population with similar genetic properties and evaluated the performance of models for six simulated traits with distinct genetic architectures. Different cross validation strategies were evaluated, and highest accuracies were achieved using within family cross validation. The inclusion of pedigree information in genomic prediction models did not yield higher accuracies. The different RKHS models resulted in similar predictions accuracies, and RKHS and BayesA generated substantially better predictions than pedigree-only models. The additive-BayesA resulted in higher accuracies than RKHS for rust incidence and in simulated additive-oligogenic traits. For DBH, HT and additive-dominance polygenic traits, the RKHS- based models showed slightly higher accuracies than BayesA. Our results indicate that BayesA performs the best for traits with few genes with major effects, while RKHS based models can best predict genotypic effects for clonal selection of complex traits.


Assuntos
Marcadores Genéticos , Genoma , Genômica , Modelos Genéticos , Linhagem , Algoritmos , Cruzamento , Genética Populacional , Genômica/métodos , Genótipo , Fenótipo , Melhoramento Vegetal , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...